1 | # -*- coding: utf-8; mode: tcl; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- vim:fenc=utf-8:ft=tcl:et:sw=4:ts=4:sts=4 |
---|
2 | # $Id$ |
---|
3 | |
---|
4 | PortSystem 1.0 |
---|
5 | PortGroup python27 1.0 |
---|
6 | |
---|
7 | name py27-mlpy |
---|
8 | version 2.2.2 |
---|
9 | revision 1 |
---|
10 | categories lang python |
---|
11 | maintainers gmail.com:marc.schlaich |
---|
12 | description Python package for predictive modeling |
---|
13 | long_description \ |
---|
14 | mlpy is a high-performance Python package for predictive modeling. \ |
---|
15 | It makes extensive use of NumPy (http://scipy.org) to provide fast \ |
---|
16 | N-dimensional array manipulation and easy integration of C code. mlpy \ |
---|
17 | provides high level procedures that support, with few lines of code, \ |
---|
18 | the design of rich Data Analysis Protocols (DAPs) for preprocessing, \ |
---|
19 | clustering, predictive classification and feature selection. Methods \ |
---|
20 | are available for feature weighting and ranking, data resampling, \ |
---|
21 | error evaluation and experiment landscaping. The package includes \ |
---|
22 | tools to measure stability in sets of ranked feature lists. |
---|
23 | |
---|
24 | platforms darwin |
---|
25 | |
---|
26 | homepage https://mlpy.fbk.eu/ |
---|
27 | master_sites https://mlpy.fbk.eu/download/src/ \ |
---|
28 | |
---|
29 | distname MLPY-${version} |
---|
30 | |
---|
31 | checksums sha1 6783f96f28d31adac65c8135631231f2bc1e0210 \ |
---|
32 | rmd160 80d37e3ebb0c23c5d6a329721c526c4c18a74aac |
---|
33 | |
---|
34 | depends_lib port:gsl port:py27-cython |
---|
35 | depends_build port:py27-distribute |
---|