1 | # -*- coding: utf-8; mode: tcl; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- vim:fenc=utf-8:ft=tcl:et:sw=4:ts=4:sts=4 |
---|
2 | # $Id$ |
---|
3 | |
---|
4 | PortSystem 1.0 |
---|
5 | PortGroup github 1.0 |
---|
6 | PortGroup python 1.0 |
---|
7 | |
---|
8 | github.setup tazzben EGSimulation 1.1 |
---|
9 | github.project EconScripts |
---|
10 | categories science |
---|
11 | platforms darwin |
---|
12 | maintainers ad.wsu.edu:tazz_ben |
---|
13 | license public-domain |
---|
14 | supported_archs noarch |
---|
15 | |
---|
16 | description Simulate the Ellison & Glaeser statistic using randomness alone |
---|
17 | |
---|
18 | long_description By using a simulation of firm sizes (using a lognormal distribution) and specified geographic regions, standard deviations and employee head count, we can compute the critical regions for the Ellison & Glaeser statistic. In the process, it also calculates herfindahl values and provides critical regions. You can also use Françoise Maurel and Béatrice Sédillot (1999)'s specification for both G and gamma. |
---|
19 | |
---|
20 | homepage ${github.homepage}/tree/master/Simulations/Python/EG%20Statistic |
---|
21 | |
---|
22 | checksums rmd160 04ccfd6aef32e323145116909ce5a89eec76018c \ |
---|
23 | sha256 6ee0bac77adaf1653a07b2ec6cafd53a2c1c5d19bb1092644e1fdee4094fb17b |
---|
24 | |
---|
25 | python.versions 27 |
---|
26 | |
---|
27 | depends_lib-append port:py${python.version}-crypto \ |
---|
28 | port:py${python.version}-numpy \ |
---|
29 | port:py${python.version}-scipy |
---|
30 | |
---|
31 | python.link_binaries_suffix |
---|
32 | |
---|
33 | livecheck.type regex |
---|
34 | livecheck.url ${github.homepage}/tags |
---|
35 | livecheck.regex (\[0-9.\]+)${extract.suffix} |
---|