1 | # -*- coding: utf-8; mode: tcl; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- vim:fenc=utf-8:ft=tcl:et:sw=4:ts=4:sts=4 |
---|
2 | # $Id$ |
---|
3 | |
---|
4 | PortSystem 1.0 |
---|
5 | PortGroup github 1.0 |
---|
6 | PortGroup python 1.0 |
---|
7 | |
---|
8 | github.setup tazzben WW 1.3 |
---|
9 | |
---|
10 | categories science education |
---|
11 | platforms darwin |
---|
12 | maintainers unomaha.edu:bosmith |
---|
13 | license MIT |
---|
14 | supported_archs noarch |
---|
15 | |
---|
16 | description A command line tool to disaggregate pre and post test responses into Walstad and Wagner learning types |
---|
17 | |
---|
18 | long_description In the Spring of 2016, Walstad and Wagner released a paper suggesting that the pretest/posttest delta is insufficient in assessing learning outcomes. However, performing such a disaggregation is time intensive, especially if the questions appear in a different location (or order) on the pre and post test. WW_out is a command line tool that makes this disaggregation easy. It uses four CSV files to generate outcomes by question and student. |
---|
19 | |
---|
20 | checksums rmd160 c00c14c6cce7284260bae4be6a8c7909d5d542d1 \ |
---|
21 | sha256 670252b71bc8a61c49212c730b4bb1da84c558290eaa4dd9d83a6c3e918131d0 |
---|
22 | |
---|
23 | python.default_version 27 |
---|
24 | |
---|
25 | depends_build port:py${python.version}-setuptools |
---|
26 | depends_lib-append port:py${python.version}-pandas |
---|